

```

% -- Niwot Ridge Subalpine Forest AmeriFlux Data (site ID: US-NR1) --
% MST Time Period: 2024 01/01 00:00:00 - 2025 01/01 00:00:00, JD 1.000-367.000 (MST)
% UTC Time Period: 2024 01/01 07:00:00 - 2025 01/01 07:00:00, JD 1.292-367.292 (UTC)
% File Name: niwot_USNRL_radiation_2024.csv
% File Created by: Sean Burns (sean.burns@colorado.edu)
% File Created for: Mark Raleigh (raleigma@oregonstate.edu), Nicolas Tarasewicz (Nic.Tarasewicz@colorado.edu)
% Date: 28-Jan-2025
% ----

% 28-Jan-2026, Mistake noticed by Bella Kamplain (fixed description of SPN1
% incoming radiation (col 34 is total radiation, direct + diffuse)).

% Current Version: ver.2025.01.28

% * added SPN1 total/diffuse data at 25.5m (sensor added in Fall 2024)

% * details about the SPN1 installation are here:
%   https://urquell.colorado.edu/sean/emails\_about\_spn1\_installation.txt

% Previous Version: ver.2023.04.12

% * The SP-610 outgoing shortwave radiation data was being clipped by the
% software QA/QC. This clipping was removed. An example of the clipped data:
%   https://urquell.colorado.edu/data\_ameriflux/plots/radiation\_usnrl\_compare\_Rsw\_in\_2020.pdf

% * Added data for years of 2020 (now full year), 2021, and 2022

% ----

% Previous Version: ver.2020.05.14 (Preliminary)

% Notes:
% * Plots of the radiation data are in:
%   https://urquell.colorado.edu/data\_ameriflux/plots/
% * Snow will accumulate on the up-looking sensors in the winter. See photos on the site
%   calendar: https://urquell.colorado.edu/calendar/
% * The raw voltages are include in case you need to calculate (or check) anything.
% * the incoming longwave from the SL-510 sensor seems to be a bit
%   strange in 2019 (note this sensor failed in July 2019 and was replaced
%   on 23 Oct 2019)...the issues with the SL-510 are confirmed by
%   comparison to the SN-500 radiation: for both 2019 and 2020 there is an
%   offset between the SL-510 and SN-500 that needs to be better
%   understood...however, in 2019, the differences are large and variable,
%   but in 2020, the differences are fairly consistent. Based on this, I
%   think the 2019 SL-510 longwave data are questionable...
% * it took some effort to add/remove/add the SN-500 sensor, but I'm
%   happy we did...I have not tried to compare Rlw_out calculated from the
%   T_ir data to Rlw_out from the SN-500...
% * the IR surface temperature sensor seemed to have a strange negative
%   shift of around 2 degC on day 96 of 2019. see
%   "radiation_usnrl_2019_zoom.pdf" for details. with the snowpack I
%   expect a max surface temp of around 0 degC, but on day 96 of 2019 this
%   seemed to shift...this shift seems to go away in the 2020 data?...

% ----

% Columns are:
% 1-6. Year, Month, Day, Hour, Minute, Sec -- in MST, Time Stamp Corresponds to center of Averaging Time Period
% 07. Decimal Day of Year (MST)
% 08. Rsw_in_25m_KZ      W/m2      25.5m      Incoming Shortwave Radiation      Kipp and Zonen CNR1
% 09. Rsw_out_25m_KZ     W/m2      25.5m      Outgoing Shortwave Radiation      Kipp and Zonen CNR1
% 10. Rlw_in_25m_KZ      W/m2      25.5m      Incoming Longwave Radiation      Kipp and Zonen CNR1
% 11. Rlw_out_25m_KZ     W/m2      25.5m      Outgoing Longwave Radiation      Kipp and Zonen CNR1
% 12. Rppfd_in_25m       umol/m2/s  25.5m      Incoming Photosynthetic Active Photon Flux Density (PPFD)      LI-COR 190-SA
% 13. Rppfd_out_25m      umol/m2/s  25.5m      Outgoing PPFD      REBS Q*7.1 (sn Q96333)
% 14. Rnet_25m_REBS      W/m2      25.5m      Net Radiation      Rebs Q*7.1 (sn Q96333)
% 15. Rnet_0200cm_REBS   W/m2      2m        Net Radiation      Apogee SP-510
% 16. Rsw_in_sp510        W/m2      2.2m      Incoming Shortwave Radiation      Apogee SP-510
% 17. Rsw_in_sn500        W/m2      2.2m      Incoming Shortwave Radiation      Apogee SN-500
% 18. Rsw_out_sp610       W/m2      2.2m      Outgoing Shortwave Radiation      Apogee SP-610
% 19. Rsw_out_sn500       W/m2      2.2m      Outgoing Shortwave Radiation      Apogee SN-500
% 20. Rlw_in_si1510       W/m2      2.2m      Incoming Longwave Radiation      Apogee SL-510
% 21. Rlw_in_sn500        W/m2      2.2m      Incoming Longwave Radiation      Apogee SN-500
% 22. Rlw_out_sn500       W/m2      2.2m      Outgoing Longwave Radiation      Apogee SN-500
% 23. Tir_si121          degC      ground (sensor at 2m)  Infrared Surface Temperature      Apogee SI-121
% 24. T_therm_si121       degC      2.2m      Thermistor Temperature      Apogee SI-121
% 25. T_therm_si1510      degC      2.2m      Thermistor Temperature      Apogee SL-510
% 26. T_med_uc            degC      2.5m      Air Temperature at Mini-tower      Medtherm Thermocouple
% 27. snowdepth_judd      cm        2.5m      Snow Depth      Judd Ultrasonic Depth Sensor
% 28. Rsw_in_sp510_mV     mV        2.2m      Incoming Shortwave Radiation Voltage      Apogee SP-510
% 29. Rsw_out_sp610_mV    mV        2.2m      Outgoing Shortwave Radiation Voltage      Apogee SP-610
% 30. Rpile_in_si1510_mV mV        2.2m      Thermopile Voltage      Apogee SL-510
% 31. T_therm_si1510_mV  mV        2.2m      Thermistor Voltage      Apogee SL-510
% 32. Tir_pile_si121_mV  mV        2m        Thermopile Voltage      Apogee SI-121
% 33. Tir_term_si121_mV  mV        2m        Thermistor Voltage      Apogee SI-121
% 34. Rsw_in_spn1          W/m2      25.5m      Incoming (Total = Direct + Diffuse) Shortwave Radiation      Delta-T Devices SPN1
% 35. Rdiff_in_spn1        W/m2      25.5m      Incoming (Diffuse) Shortwave Radiation      Delta-T Devices SPN1
% ----
%
```